Fragment of the Coast Range ophiolite and the Great Valley sequence in the San Juan Islands, Washington

Geology ◽  
1988 ◽  
Vol 16 (10) ◽  
pp. 948 ◽  
Author(s):  
John I. Garver
2021 ◽  
Author(s):  
John Wakabayashi

ABSTRACT Franciscan subduction complex rocks of Mount Diablo form an 8.5 by 4.5 km tectonic window, elongated E-W and fault-bounded to the north and south by rocks of the Coast Range ophiolite and Great Valley Group, respectively, which lack the burial metamorphism and deformation displayed by the Franciscan complex. Most of the Franciscan complex consists of a stack of lawsonite-albite–facies pillow basalt overlain successively by chert and clastic sedimentary rocks, repeated by faults at hundreds of meters to <1 m spacing. Widely distributed mélange zones from 0.5 to 300 m thick containing high-grade (including amphibolite and eclogite) assemblages and other exotic blocks, up to 120 m size, form a small fraction of exposures. Nearly all clastic rocks have a foliation, parallel to faults that repeat the various lithologies, whereas chert and basalt lack foliation. Lawsonite grew parallel to foliation and as later grains across foliation. The Franciscan-bounding faults, collectively called the Coast Range fault, strike ENE to WNW and dip northward at low to moderate average angles and collectively form a south-vergent overturned anticline. Splays of the Coast Range fault also cut into the Franciscan strata and Coast Range ophiolite and locally form the Coast Range ophiolite–Great Valley Group boundary. Dip discordance between the Coast Range fault and overlying Great Valley Group strata indicates that the northern and southern Coast Range fault segments were normal faults with opposite dip directions, forming a structural dome. These relationships suggest accretion and fault stacking of the Franciscan complex, followed by exhumation along the Coast Range fault and then folding of the Coast Range fault.


The Murrelet ◽  
1940 ◽  
Vol 21 (1) ◽  
pp. 7
Author(s):  
Walter W. Dalquest
Keyword(s):  
San Juan ◽  

2016 ◽  
Vol 94 (7) ◽  
pp. 505-515 ◽  
Author(s):  
Thomas A. Jefferson ◽  
Mari A. Smultea ◽  
Sarah S. Courbis ◽  
Gregory S. Campbell

The harbor porpoise (Phocoena phocoena (L., 1758)) used to be common in Puget Sound, Washington, but virtually disappeared from these waters by the 1970s. We conducted systematic aerial line-transect surveys (17 237 km total effort) for harbor porpoises, with the goal of estimating density and abundance in the inland waters of Washington State. Surveys in Puget Sound occurred throughout the year from 2013 to 2015, and in the Strait of Juan de Fuca and the San Juan Islands (and some adjacent Canadian waters) in April 2015. We used a high-wing, twin-engine Partenavia airplane and four observers (one on each side of the plane, one looking through a belly port, and one recording data). A total of 1063 harbor porpoise groups were sighted. Density and abundance were estimated using conventional distance sampling methods. Analyses were limited to 447 harbor porpoise groups observed during 5708 km of effort during good sighting conditions suitable for line-transect analysis. Harbor porpoises occurred in all regions of the study area, with highest densities around the San Juan Islands and in northern Puget Sound. Overall, estimated abundance for the Washington Inland Waters stock was 11 233 porpoises (CV = 37%, 95% CI = 9 616 – 13 120). This project clearly demonstrated that harbor porpoises have reoccupied waters of Puget Sound and are present there in all seasons. However, the specific reasons for their initial decline and subsequent recovery remain uncertain.


1888 ◽  
Vol 5 (8) ◽  
pp. 347-350 ◽  
Author(s):  
Geo. M. Dawson

Previous observations in British Columbia have shown that at one stage in the Glacial period—that of maximum glaciation—a great confluent ice-mass has occupied the region which may be named the Interior Plateau, between the Coast Mountains and Gold and Eocky Mountain Kanges. From the 55th to the 49th parallel this great glacier has left traces of its general southward or southeastward movement, which are distinct from those of subsequent local glaciers. The southern extensions or terminations of this confluent glacier, in Washington and Idaho Territories, have quite recently been examined by Mr. Bailley Willis and Prof. T. C. Chamberlin, of the U.S. Geological Survey. There is, further, evidence to show that this inland-ice flowed also, by transverse valleys and gaps, across the Coast Range, and that the fiords of the coast were thus deeply filled with glacier-ice which, supplemented by that originating on the Coast Range itself, buried the entire great valley which separates Vancouver Island from the mainland and discharged seaward round both ends of the island. Further north, the glacier extending from the mainland coast touched the northern shores of the Queen Charlotte Islands.


Sign in / Sign up

Export Citation Format

Share Document